
at Fermi National Accelerator Laboratory 

FERMIIAB-FN-627 

Beam-beam Interaction Effects in the Fermilab Collider 

Donna Marie Siergiej 

B.S., Eisenhower College of the Rochester Institute of Technology, 1981 
M.S., University of New Mexico, 1986 

DISSERTATION 

Submitted in Partial Fulfillment of the 
Requirements for the Degree of 

Doctor of Philosophy in Physics 

The University of New Mexico 
Albuquerque, New Mexico 

March 1995 

0 Operated by Universities Research Association inc. under Contract No. DE-ACO2-76CH03000 with the United States Depaftment of Energy 



Disclaimer 

This report was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor any agency thereof, nor any of 
their employees, makes any warranty, express or implied, or assumes any legal liability 
or responsibility for the accuracy, completeness, or usefulness of any information, 
appamtus, product, or process disclosed, or represents that its use would not infringe 
privately owned rights. Reference herein to any specifx commercial product, process, or 
service by trade name, trademark, manufacturer, or otherwise, does not necessarily 
constitute or imply its endorsement, recommendation, or favoring by the United States 
Government or any agency thereof. The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States Government or any agency 
thereof. 



BEAM-BEAM INTERACTION EFFECTS 

IN THE FERMILAB COLLIDER 

BY 

DONNA MARIE SIERGIEJ 

B.S., Eisenhower College of the Rochester Institute of Technology, 1981 

M.S., University of New Mexico, 1986 

DISSERTATION 

Submitted in Partial Fulfillment of the 

Requirements for the Degree of 

Doctor Of Philosophy in Physics 

The University of New Mexico 

Albuquerque, New Mexico 

March 1995 



*This work has been supported by Fermi National Accelerator Laboratory under the 

Joint University-Fermilab Doctoral Program in Accelerator Physics. Fermilab is operated 

by the Universities Research Association under contract with the United States Department 

of Energy. 

ii 



For my parents, 

Walter and Eileen Siergiej 

. . . 
111 



ACKNOWLEDGEMENTS 

I extend my gratitude to Robert Joshel, whose friendship and encouragement inspired 

me to complete this work. 

I would like to thank the director of Fermi National Accelerator Laboratory, John Peo- 

ples, for giving me the opportunity to study beam-beam interaction effects in the Tevatron 

Collider. I also thank my academic advisor at the University of New Mexico, David Wolfe, 

for his guidance and support. 

In the course of my graduate research program, I have had the fortune of working with 

three research advisors, each of whom contributed in part to my learning the tools of the 

trade. I thank Glenn Goderre, Rol Johnson and Ed1 Schamiloglu for the valuable time I 

spent working with them. I also thank Glenn Goderre for his comments and suggestions 

during the writing of this dissertation. 

I am grateful to Leo Michelotti and Steve Peggs for helping me gain an understanding 

of the beam-beam interaction. I would also like to thank Werner Herr for his assistance in 

developing a beam-beam simulation of the Tevatron during my visit to CERN. 

There are many people in the Accelerator Division at Fermilab whom have helped me 

in a steady manner. Most importantly, I wish to acknowledge the Operations Staff for their 

selfless help during my beam studies in the Tevatron. I was constantly impressed by their 

willingness and enthusiasm to work on any projects or problems which would arise. My dis- 

cussions with Peter Bagley, Jerry Annala, Mike Martens and Norman Gelfand of the Teva- 

tron group always proved helpful. Linda Spentzouris and Francois Ostiguy were both col- 

leagues and friends during my stay at Fermilab, and I thank them for their valuable advice 

and assistance. 

I would especially like to thank David Finley for his active interest in this work and for 

sharing his methods of scientific inquiry. 

iv 



BEAM-BEAM INTERACTION EFFECTS 

IN THE FERMILAB COLLIDER 

BY 

DONNA MARIE SIERGIEJ 

ABSTRACT OF DISSERTATION 

Submitted in Partial Fulfillment of the 

Requirements for the Degree of 

Doctor Of Philosophy in Physics 

The University of New Mexico 

Albuquerque, New Mexico 

March 1995 



BEAM-BEAM INTERACTION EFFECTS 

IN THE FERMILAB COLLIDER 

DONNA MARIE SIERGIEJ 

Ph.D., Physics, University of New Mexico, 1995 

Fermi National Accelerator Laboratory’s Collider is the first collider to implement a he- 

lical orbit separation scheme for colliding protons and antiprotons. Six antiproton bunches 

collide head-on with six proton bunches at the two high energy physics detector locations 

in the ring. The orbits are separated in both the horizontal and vertical planes at all other 

collision points. 

A study of the dependence of the beam-beam interaction on transverse beam separation 

is presented. Beam-beam experiments in the Collider determined that the beam-beam in- 

teraction is the predominant nonlinear force which drives seventh order resonances in the 

Collider. These odd-ordered resonances were observed to cause large particle losses in the 

presence of a transverse beam separation or crossing angle at an interaction point. This ob- 

servation led to a method of “helical orbit tuning” using electrostatic separators and resulted 

in a 5% increase in the luminosity during Collider Run IA. Independant tuning of beam sep- 

aration and crossing angle at head-on collision points now provides a luminosity enhance- 

ment in routine Collider operations. 

Beam-beam experiments were compared with beam-beam simulations to produce an un- 

derstanding of colliding beam behavior when two particle distributions collide with a trans- 

verse beam separation. An experimental measure of particle losses due to resonant excita- 

tion at different beam separations showed good agreement with beam-beam simulation re- 

sults. This comparative agreement extends across a range of beam separations and particle 

tunes. 

This investigation lays a foundation for using beam-beam simulations as a predictive 

tool for defining minimum beam separation criteria for stable Collider operation. 
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Chapter 1 

INTRODUCTION 

The goal of accelerator physics in hadron colliders is to provide a large number of in- 

teractions of colliding particles at a large center of mass energy (TeV range). Collisions of 

particles at such high energies allow high energy physicists to look for interactions which 

will further their understanding of the strong force and the elementary particles subjected 

to this force. 

The number of interactions per second of two colliding distributions of particles is de- 

fined as 

R = L U‘t& (1.1) 

where l is the luminosity and g tot is the total nuclear cross section. The total nuclear cross 

section is the cross sectional area of collisions, given in units of square cm. Luminosity is 

the number of interactions per square cm per second. 

In order to provide a large number of interactions, an accelerator physicist works at op- 

timizing the luminosity. It will be shown in this work that the luminosity of two colliding 

particle distributions of equal transverse size is 

(1.2) 

The particle distributions are assumed to be Gaussian distributions with a standard devia- 

tion given by CT. The revolution frequency is frev and F(z) is a factor taking into account 

the longitudinal distribution of the bunches. The number of particles in the two colliding 

distributions are given by Ni and N2, respectively. 

A particle distribution is confined and accelerated in a synchrotron with an externally 



applied RF field, which bunches particles into discrete time-dependent distributions. If there 

are multiple bunches colliding in an accelerator, the total luminosity is 

L total = LB (1.3) 

where B denotes the number of bunches. 

The beam-beam interaction is the electromagnetic interaction a particle experiences as 

it travels past an opposing particle distribution. Two colliding bunches in a synchrotron 

will experience a beam-beam interaction at two points in the ring. Multiple bunches in a 

synchrotron will increase the number of beam-beam interaction points. 

The beam-beam interaction between colliding particles has been a dominant factor in 

limiting the integrated luminosity in a colliding beam storage ring. Efforts to curb mea- 

sureable luminosity limitations due to the beam-beam interaction seem to have led quite 

naturally to an implementation of beam separation schemes in storage rings. Particles of 

opposite charge were separated in the VEPP-2 electron-positron storage ring at Novosibirsk 

as early as 1967.111 

In the first Collider Run (1988- 1989) of Fermilab’s hadron collider known as the Teva- 

tron, the principle limitation on the luminosity was due to the beam-beam interaction. The 

Collider had reached its “beam-beam limit”; that is, one could not increase the luminosity 

by decreasing the beam size or by increasing the number of protons per bunch.121 In fact, it 

was necessary to dilute the phase space density of the protons in order to maintain antipro- 

ton stability. In order to decrease beam-beam effects at unwanted collision points, a method 

of separating colliding bunches at certain locations in the ring was developed. This became 

necessary in order to progress to a higher luminosity. 

A helical orbit separation scheme was first implemented in the Collider in Collider Run 

IA (1992-1993). Six antiproton bunches and six proton bunches were separated at every 

beam-beam collision point except for the two crossing points at the high energy physics 

detector locations. Colliding beams moved in helical orbits with beam separation present 

in both the horizontal and vertical planes. The achievable luminosity of 1.6 x 1030cm-2 

set-’ without beam separation increased to luminosities of 5.4 x 1030cm-2 set-’ in routine 

operations during Collider Run IA.131 

This dissertation presents a study of the dependence of the beam-beam interaction on 

transverse beam separation. A method of tuning the helical orbit in order to optimize the 

luminosity is discussed. Experiments performed in the Tevatron Collider measured parti- 

cle losses as a function of beam separation. A comparison is made between experimentally 

2 



measured losses and the dynamics of a particle’s motion in a simulation code which mod- 

els the beam-beam interaction. Particle losses in a real accelerator are related to losses as 

defined in the model. The similarities along with the discrepancies between the measure- 

ments and the beam-beam simulation are discussed. Observations are made concerning the 

predictive power of a beam-beam model. 

Chapter 2 contains a brief description of relevant accelerator physics parameters used 

throughout this work. A Hamiltonian analysis of the beam-beam interaction is discussed 

in Chapter 3, along with an introduction of the beam-beam simulaton code. Chapter 4 de- 

scribes various devices in the Tevatron which were used as measuring tools in beam-beam 

experiments. Chapter 5 presents the results of beam-beam experiments in the Tevatron and 

compares the experimental results to beam-beam simulations. Chapter 6 concludes the beam- 

beam study with a summary of the results. 

3 



Chapter 2 

PARTICLEMOTIONINANACCELERATOR 

A particle accelerator uses combinations of focusing and defocusing magnetic elements 

to define a stable orbit for accelerating particles. This system of strong focusing is known 

as an alternating gradient system. 141 Particle motion under the influence of an alternating 

gradient system in the Tevatron Collider is the subject of this chapter. 

A reader’s knowledge of accelerator physics terminology is not assumed, so accelerator 

physics concepts relevant to this work are defined. Section 2.1 provides a brief description 

of the dynamics of a single particle’s motion. The fundamentals of particle motion in the 

presence of magnetic field errors is discussed in Section 2.2. 

This dissertation presents beam-beam experiments performed in Fermilab’s Tevatron 

during a Collider Run ( Collider Run IA and Collider Run IB ). Section 2.3 is intended to 

introduce the reader to the Tevatron as it is used during a Collider Run. Section 2.4 lists the 

operational accelerator physics parameters relevant to the beam-beam experiments. 

2.1 RELEVANT ACCELERATOR PHYSICS PARAMETERS 

The Fermilab Tevatron has the distinction of being the highest energy collider in exis- 

tence, currently colliding proton and antiprotons at a center of mass energy of 1800 GeV. 

The ability to constrain such high energy particles in a 1 km radius ring is due to the bend- 

ing and focusing capabilities of the superconducting magnets. 1% The Tevatron was the first 

accelerator to make use of superconducting magnets. 161 All of the dipole, quadrupole and 

correction magnets are cooled to 4.6 degrees Kelvin, enabling maximum electric current to 

flow through coils with minimal resistance. 

An overview of the Fermilab accelerator complex is shown in Figure 2.1 .171 The Teva- 

tron is divided into six sectors called arcs which are connected by six long straight sections. 
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Figure 2.1: Layout of Fermilab’s accelerators. The relative size of the accelerators is ap- 
proximately to scale except that the Tevatron is actually built below the Main Ring. The 
radius of the Main Ring and Tevatron is 1 km. High energy physics detectors are located at 
the BO and DO straight sections. 
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Figure 2.2: Coordinate system to define a particle’s closed orbit. 

The arcs are composed of a repeating sequence of “cells”. The configuration of magnets in 

a cell is determined by the principles of an alternate-gradient focusing scheme. A typical 

half-cell in the Tevatron consists of four dipole magnets, a quadrupole and magnetic cor- 

rection elements. The detailed description of the way in which dipoles, quadrupoles, drift 

sections and all of the correction elements are placed in the ring is called the accelerator 

“lattice”. 

The constant magnetic field of the dipole magnets in the arcs of the Tevatron guides a 

charged particle along an approximately circular orbit. If the particle travels through the 

center of the quadrupoles and correction elements, consequently being guided only by the 

dipole field, the particle’s trajectory is said to follow the design orbit of the accelerator. Any 

particle whose path deviates slightly from the design orbit is focused onto a closed orbit by 

quadrupole magnets. 

It is convenient to define a reference frame to describe a particle’s closed orbit as shown 

in Figure 2.2. The ji and 9 directions describe the horizontal and vertical deviations of the 

particle’s motion from the design orbit. The 5 direction is the curvilinear coordinate indicat- 

ing the direction tangential to the particle’s forward motion. At high energies, the azimuthal 

location s is represented in the time domain as s = ct, c being the speed of light. The co- 

ordinate system is a right-handed coordinate system, so the positive sense of 2 points in the 

radially outward direction and 9 points in the vertically upward direction. 

A quadrupole magnet produces a magnetic field which changes linearly in both trans- 

verse dimensions; B, = $$ y and BY = $) I. An approximation which is made in a high 

energy accelerator is a thin lens approximation: a particle travelling through a quadrupole 

will experience a negligible change in its position and experience only a small change in 

the transverse components of its momentum. In this approximation, a particle travelling 

through a short quadrupole of length L receives a small-amplitude kick which is given by 

6 



Ax’ = ,& B, -- AY’ = & %!. (2.1) 

The prime denotes a differentiation with respect to the longitudinal coordinate s; 5’ E 

dz/ds. The constant dipole field guiding the particle in a circular orbit is given by B and 

the dipole bend radius is p. The quantity /BP[ is the momentum per unit charge of a particle 

(18~1 = p/e) and is called the magnetic rigidity. The quadrupole kick is focusing in the 

horizontal plane and it is defocusing in the vertical plane. It is possible to produce a net 

focusing system using a sequence of quadrupoles in which a quadrupole which is defocusing 

in a given plane is followed by a quadrupole which focuses in that plane. Such a system of 

alternating focusing tid defocusing quadrupoles, along with the drift spaces in between the 

quadrupoles, form the basic elements of an alternating gradient system.141 

The Lorentz force, ev’x 2, describes the motion of a particle in the presence of the dipole 

magnets, quadrupole magnets and drift sections of a synchrotron. The equation of motion 

derived from this force is known as Hill’s equation. In one dimension, Hill’s equation is141 

a22 
@ + K(s)x = 0. (2.2) 

The deviation of a particle’s motion from its closed orbit is given by Z(S). The quadrupole 

strength is Ii’(s), where 

K(s) = +$3~(s). (2.3) 

The magnetic field at the azimuthal point s is B(s). The gradient of the quadrupole field, 

B’ = dB,/dx = a&/ay, is equal in both transverse planes as described by Maxwell’s 

expression for the curl of B in free space, V x 8 = 0. Note that Ii’(s) is zero in a drift section 

and is also zero in a dipole if one neglects magnetic field errors. In a circular accelerator, the 

quadrupole strength is periodic with the circumference of the accelerator. It also alternates 

in sign depending upon whether the quadrupole is focusing or defocusing in a given plane. 

In general, K(s) may be taken as a constant for each magnetic element in the ring. At 1 

TeV, a standard focusing quadrupole in the Tevatron operates with a magnetic field gradient 

of 76 T/m, yielding a quadrupole strength of 0.02277 rnm2. The linear motion of a particle 

through each element in the ring can be solved for analytically in Hill’s equation if the initial 

position and angle of the particle are known. Let the initial position and angle of a particle 

be x1 and x’, and its final position and angle after traversing a magnetic element of length L 

7 



be 22 and z;. The motion of the particle through the magnetic element is described by 

( Y)=a2( 9 (2.4) 

where Ml2 is a linear transfer matrix. The linear transfer matrices for quadrupoles (K # 0), 

drift sections (li’ = 0) and dipoles (K = 0) of length L are listed here. 

1 L 
K=O: f&= ( 1 0 1 

K#O: M12= ( 
cos( L&z) -& sin( L&T) 

-asin cos(LdE) ) 

(2.5) 

(2.6) 

The focusing scheme used in accelerators is comparable to a combination of thin lenses 

in an optical system. In other words, the length of a quadrupole is much smaller than its 

focal length. Using the thin lens approximation, the length of the quadrupole in the linear 

transfer matrix of Equation 2.6 is assumed to go to zero as the quantity fi L remains finite. 

The transfer matrix of a focusing quadrupole under the thin lens approximation is 

M12 = 1 0 ( i (2.7) -- 
: 1 ’ 

where f = (I(L)-’ . The transfer matrix of a focusing quadrupole is none other than that of 

a thin optical focusing lens with focal length f. As shown previously, the same quadrupole 

will be defocusing in the other transverse plane of motion. A defocusing transfer matrix is 

equivalent to the focusing transfer matrix described above with the sign off reversed, cor- 

responding to a thin defocusing lens in an optical system. A standard quadrupole of length 

1.678 meters in the Tevatron has a focal length of 26.1 meters. Thus the longitudinal dis- 

tance between focusing and defocusing quadrupoles in the Tevatron is approximately 26 

meters to provide net focusing in both transverse planes of motion. 

ACCELERATOR LATTICEPARAMETERS 

If a particle traverses a series of n elements having transfer matrices Ml ,M2,M3 up to 

Mn, the motion through the elements is described by a single linear transfer matrix: 

Ml2 = M,M2M3....- W2. (2.8) 
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This method of solution is useful in the design of a ring, but it is cumbersome to use in 

describing the general nature of particle trajectories. A much more convenient solution of 

Hill’s equation is given by the general solution for x(s): 

x(s) = A&&OS ($(s) + 6). (2.9) 
The functions p(s) and G(s) are predetermined functions of s while ‘-1 and 5 are constants 

which determine a particular particle trajectory. Note that Hill’s equation is the equation 

of motion of a harmonic oscillator with a periodic spring constant which depends upon dis- 

tance. As would be expected, its solution resembles that of a harmonic oscillator except that 

the amplitude of oscillation is no longer constant but varies with distance. 

A better understanding of the beta function, p(s), and the phase advance of a particle, 

$(s), is obtained by substituting x(s) into Hill’s equation. Two differential equations be- 

come apparent, 

$w, = 0, 
and 

2p”P - (@‘)2 - 4p2(?$)2 + 4p%(s) = 0. 

(2.10) 

(2.11) 

As Equation 2.11 indicates, if the focusing strength K(s) is known, a solution for the 

beta function, ,8(s), is found numerically. The beta function thus represents an alternative 

description of the magnetic focusing structure of the accelerator. It is a powerful represen- 

tation in that it bypasses the necessity to always map a particle through all of the individual 

magnetic elements in the ring. The focusing properties of the entire ring are represented by 

the beta function in each transverse plane. 

Equation 2.10 gives the phase advance of a particle’s motion. A particle’s phase advance 

from a location s1 in the ring to a location s2 is . 

A$= “-. J 
ds 

Sl PM 

(2.12) 

The phase advance of a particle does not change with a constant frequency like that of a har- 

monic oscillator, It increases as a function of the beta function or, equivalently, as a function 

of quadrupole strengths. The phase advance of a particle is defined in both the horizontal 

and vertical planes. In a given transverse plane, the beta function in the arcs of the Tevatron 

is approximately 100 meters at the location of a focusing quadrupole and is approximately 
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30 meters at the location of a defocusing quadrupole. A particle’s horizontal phase advances 

more rapidly at the location of a defocusing quadrupole. 

The parameters p(s) and $J( ) s are conventionally called accelerator lattice parameters 

or Twiss parameters. Twiss parameters were used by Courant and Snyder to define a linear 

transfer matrix which mapped a particle’s motion through any number of magnetic elements 

in an accelerator.141 This linear transfer matrix represents a particle’s complete traversal in 

one plane from a location si to a location ~2. As in Equation 2.8, the transfer matrix is given 

bY 

msinA$ M fi(cos A$ + crl sin A+) 
12 

= 

-zsinA++ zcosA$ &(cosAlC,-(~zsinA$) 
(2.13) 

The parameter a(s) = --i(ap/a s is an accelerator lattice parameter which describes the ) 

slope of the beta function. 

THETUNE OFAPARTICLE 

The periodicity of the beta function with the circumference of the ring dictates that a 

particle will advance in phase by the same amount upon each revolution of the ring. This 

quantity is written as 2rQ, where 

The parameter Q is known as a particle’s tune. The complete integral signifies that the inte- 

gration is over one complete revolution of the ring. Inasmuch as the beta function is defined 

in two transverse planes, the tune of a particle is defined in two transverse planes. A parti- 

cle’s tune is an important quantity in accelerator physics and particularly in this work, so it 

will be discussed in some detail in this chapter and in later chapters. 

Consider observing a particle’s motion at only one azimuthal location in the ring. A 

particle’s position and phase at one observation point can be mapped in terms of an integer 

turn number by equating the turn number t with the azimuthal coordinate s as t G s/2n R. 

A particle’s trajectory from turn t - 1 to turn t is described by 

(z:) =M( :r ),,- (2.15) 

The phase advance of a particle from turn t - I to turn t is A$ = 2rQ. Referring to 

Equation 2.13, the one-turn transfer matrix M is constructed; 
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.x - 

(4 (b) 

Figure 2.3: The phase space transformation of 100 turns of a linear one-dimensional tum- 
by-turn map from ( 2, IC’ ) coordinates to normalized ( XN, xx ) coordinates. 

M= 
cos2nQ + crsin2rQ ,f3sin2i;Q 

-y sin 27rQ . cos 2rQ - a sin2wQ 
(2.16) 

The lattice parameters cx and ,8 are calculated using knowledge of the one-turn map, M. 

TRANSVERSE BEAM EMITTANCE 

A plot of a particle’s position and phase at one location in the ring over the course of 

many turns is shown in Figure 2.3a. The particle’s trajectory maps out an ellipse in the phase 

space coordinates (2, x’). The area of the ellipse is equal to nA2, where A is a constant. This 

area is a constant of the motion, similar to the total energy of a harmonic oscillator. After 

calculating the derivative of x(s) with respect to s using Equation 2.9, the constant of the 

motion is found to satisfy 
x2 $ (/3x’ + ox)2 

P = A2* 
(2.17) 

This equation points to a useful transformation from the (x, CC’) coordinate system to a nor- 

malized coordinate system (XN, X’N), where 

XN = 5X 

xx = “x + px’. VT J- 

(2.18) 

Since p and x are in units of meters, the normalized coordinates are in units of square root 

of a meter. This transformation is referred to as a Courant-Snyder transformation. r41 It is 
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based on the Floquet theory which ensures the existence of a periodic coordinate system 

which removes time dependence from the linear system. 181 By making this transformation, 

M now becomes a simple rotation matrix. As shown in Figure 2.3b, the motion of a particle 

over many turns traces out a circle in normalized phase space coordinates. Just as in the 

elliptical mapping, the area of the circle in phase space remains constant and equal to nA2. 

In accelerator physics, this constant of the motion is known as the transverse emittance of 

a single particle. 

Formally, transverse beam emittance is defined in terms of a distribution of particles. 

Transverse beam emittance is defined as the area of phase space in which a prescribed frac- 

tion of particles reside. With a measurement of the beam distribution in physical space at 

one location in the ring, the emittance enables calculation of the beam size at other azimuthal 

locations. 

In the Tevatron, a valid approximation is to assume that a particle distribution in both 

the transverse and longitudinal dimensions is a Gaussian distribution, that is, 

,$) 
N(x) = & e-s (2.19) 

in one dimension. The parameter N(x) denotes the number of particles at a transverse posi- 

tion x. The total number of particles in the distribution is NO. The rms beam size in physical 

space is given by O. The beam emittance, e, for a Gaussian distribution is 

(2.20) 

where the beta function and o are defined at the same azimuthal location. 1161 The units of 

emittance are mm-mrud. The fraction of particles contained within a given beam emittance 

is f. Determination of the fraction of particles to include in a definition of a beam size is 

somewhat arbitrary, hence different accelerator organizations choose different values off. 

Fermilab chooses to include 95% of the particle distribution in phase space, yielding a beam 

emittance of 

6rcr2 

E=P’ 
(2.2 1) 

Since beam emittance is a constant of the motion, the value of g”//3 remains constant in 

each transverse plane of motion around the entire ring. Thus, as Equation 2.9 indicates, an 

appropriately scaled beta function represents an envelope of the physical boundary that a 

beam distribution may encompass as it traverses the ring. 
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Beam emittance as defined above may not remain constant as the energy of the beam 

changes though. Liouville’s theorem defines the phase space area which remains invariant 

over all particle energies. f1 ‘1 In order to define this invariant, a transformation from (x, 5’) 

coordinates to the conjugate variables (x, pZ) is required. The variable pZ is the transverse 

component of the particle’s momentum defined in one degree of freedom. The phase space 

area in terms of ( 2, pz) coordinates is 

f 
dp,dx = mc (r&l f dx’dx = nzc (y/?&l 6. 

Normalized emittance is given by 

(2.22) 

(2.23) 

Note that the subscript notation on the parameters /? and y indicate that these quantities are 

not accelerator lattice parameters. They are the familiar relativistic parameters; p = V/C and 

y = 1/( 1 - ,f?‘). The particle’s rest mass is denoted by nz. As defined above, normalized 

emittance is invariant over all particle energies. It is a measuring tool which is used very 

often to determine if the accelerator is running properly over its entire energy range. 

CONSTRAINTS ON A PARTICLE’S TUNE 

The magnetic field in a magnetic element can be expressed as a series of multipole terms: 

the coefficient of the second order term (n = 2) represents the quadrupole field component, 

the coefficient of the third order term (n = 3) represents the sextupole field component of 

the magnetic field, and so forth (see Section 2.2). Upon passing through a magnetic ele- 

ment, a particle will experience a kick every revolution of the ring due to the sum of all 

field components in the magnetic element. 

Consider the motion of a particle in one dimension with a tune satisfying the relation 

nQ = p, where n and p are integers. If n = 2 and the particle’s tune is a half-integer value, 

the kick will add in phase and the particle’s tune is on resonance. Similarly, if 72 = 3 and the 

particle’s tune is a third integer value, a resonant condition exists. This argument extends 

to higher order magnetic field components as well. A resonant condition is equivalent to 

adding constant vectors parallel to the XL axis of phase space as shown in Figure 2.4. A 

particle’s phase space history in the presence of a constant kick at a single location is mapped 

for a tune which is an odd multiple of one-half. The kick in 2’ in Figure 2.4a translates into 

a growth in 2 at a downstream location as seen in Figure 2.4b. 
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Figure 2.4: Phase plot of a linear one-dimensional turn-by-turn map of 9 turns with a con- 
stant kick in Z’ at one location. The particle’s tune is near the half-integer. Figure a is the 
phase plot at the location of the kick. Figure b is the phase plot at a location w/2 downstream 
of the kick location. The turn number is labelled at each point in phase space. 

After many turns, even a small kick in x’ will cause growth in a particle’s amplitude at 

a downstream location and will eventually lead to the loss of the particle. This resonance 

condition is defined in two transverse dimensions as 

nzQz f nyQy = P. (2.24) 

The order of the resonance is given by summing the constants In, ( + In, ( . The integer p is 

the azimuthal frequency which drives the resonance. [121 

A plot of resonance lines satisfying Equation 2.24 is shown in Figure 2.5. The solid lines 

represent sum resonances and satisfy Equation 2.24 when both n, and nY are positive. The 

dashed lines represent difference resonances and satisfy Equation 2.24 when either n, or ny 

are negative. 

If all resonance lines which satisfied Equation 2.24 were drawn in tune space, a count- 

ably infinite number of lines would fill the plot. It will be demonstrated in this work that 

only lower order resonance effects in the Tevatron are important to avoid. Consequently, 

only resonance lines up to twelfth order are drawn. The fractional tune used as a nominal 

operating point in the Tevatron Collider is marked in the tune plot. The horizontal and ver- 

tical operating tunes are amidst the region of 12th order resonances and are bordered by 5th 

and 7th order resonances. 

The expression relating a magnetic field gradient error in an accelerator to the shift in 
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Figure 2.5: Resonance lines in tune space. Solid and dashed lines denote sum and differ- 
ence resonances, respectively. Regions are labelled by the order of the sum resonances. The 
operating point of the Tevatron is indicated by the cross mark. 

a particle’s tune is found by comparing the one turn transfer matrix which includes a small 

gradient error to the transfer matrix of equation 2.16. The gradient error is expressed as the 

inverse focal length of a thin quadrupole; q = i = IiL. The shift in a particle’s tune due 

to a magnetic field gradient error q is 

(2.25) 

where p is the beta function at the location of the gradient error. 

In order to control the tune shift of particles due to random gradient errors in standard 

quadrupoles of the lattice, correction quadrupoles are added at a location close to the stan- 

dard quadrupoles. The correction quadrupoles are capable of varying the tune of the Teva- 

tron by fl tune unit at 900 GeV to keep a particle distribution in a “resonance-free” region 

of tune space. 
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MOMENTUM DISPERSION AND~HROMATICITY 

Thus far, single particle motion in a synchrotron has been discussed for particle trajec- 

tories with a design energy specified by the magnitudes of the design magnetic fields. How- 

ever, particle distributions in a synchrotron do not all have the design energy. If a particle is 

injected into the accelerator with an energy which does not match the accelerator’s design 

energy, for example, a particle’s energy will oscillate about the design energy. These energy 

oscillations, referred to as synchrotron oscillations, will couple into the particle’s transverse 

motion through dispersion. Off momentum particles will no longer pass axially through the 

center of a quadrupole and consequently be subject to a focusing force. The closed orbit 

will thus be displaced from the central design orbit. l1 ‘1 A particle’s transverse position with 

a momentum offset is given by 

AP 
4s) = xp(s> + 17(s)&-. (2.26) 

The free betatron oscillations of Equation 2.9 are denoted by xp(s). The momentum 

offset, Ap, is the measured deviation of the particle’s momentum from the design momen- 

tum, pa. The parameter q(s) is called the dispersion and is in units of meters. Since orbits 

of higher momentum are usually at a larger radius in a high energy accelerator (when a par- 

ticle’s energy is above transition energy), the dispersion function is usually a positive func- 

tion. In an accelerator which bends horizontally and thus lies in the horizontal plane, path 

length deviations from the design will occur horizontally. The dispersion function, there- 

fore, is generally a non-zero function only in the horizontal plane. In the Tevatron, the hor- 

izontal dispersion in the arcs ranges from 2 to 6 meters. The rms momentum spread of a 

bunch distribution at 900 GeV is typically y = 0.0001. 

The dispersion T(S) and the slope of the dispersion 7’ (s) = 87 (s) /as are both Twiss pa- 

rameters. Along with p(s), a(s), and $(s), they define a complete set of accelerator lattice 

parameters used to map a particle’s linear motion in a synchrotron. 

Given the dispersion and beta function at a specific location in the ring, the rms trans- 

verse size of a bunch distribution of emittance c and momentum spread o,,/p is completely 

defined. An unnormalized beam emittance defined at la (f = 0.15 in Equation 2.20) gives 

an rms transverse beam size of 

(2.27) 

The index i is used to emphasize the parameters which are defined in both transverse planes; 
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? G i, $. Using the Fermilab definition of beam emittance (Equation 2.21), the rms trans- 

verse beam size in terms of normalized beam emittance is 

(2.28) 

Consider the variation of the rms transverse beam size in the arcs of the Tevatron at 900 GeV 

for a beam with a normalized emittance of 207; mm-mrad. A beta of 100 m and a dispersion 

of 6 m corresponds to a cr of 0.67 mm. A beta of 30 m and a dispersion of 2 m corresponds 

to a g of 0.37 mm. A particle at 30 in a particle distribution would occupy up to 2 mm in 

both transverse dimensions, or approximately 3 square mm in transverse space. 

Because a spread of momentum exists in a particle distribution, particles will traverse a 

quadrupole magnet at different transverse positions. Consider a particle with its momentum 

expressed in terms of the design momentum and a momentum offset as p = pa( 1 + z). 

Upon traversing a focusing quadrupole of length L, the particle will see a change in the fo- 

cal length of the quadrupole. The focal length of a quadrupole was previously found to be 

proportional to a particle’s momentum; .f = p/( eB’L). By substituting the new momentum 

of the particle into this focal length expression, the change in focal length is found to be 

(2.29) 

A positive momentum offset corresponds to a larger focal length. A particle with a pos- 

itive momentum offset will thus be focused less than a particle at the design momentum. 

This leads to a chromatic focusing effect on a distribution of particles similar to chromatic 

effects seen in optical systems. A parameter called the chromaticity, [, is used to relate a 

particle’s momentum offset to a corresponding change in its tune; 

AQ=Cz. (2.30) 

The chromaticity is defined in each transverse plane of motion. By using the expression for 

the tune shift due to a quadrupole kick as described by Equation 2.25, the chromaticity is 

formally defined as 

(= --$?(s)K(s)ds, (2.3 1) 

where I(( s) is the focusing strength of the lattice quadrupoles. i1 ‘1 The natural chromaticity 

is the chromaticity of a synchrotron with no correction elements added to the lattice. The 
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natural chromaticity is approximately equal in magnitude and opposite in sign to the tune 

of the synchrotron. 

Given a momentum spread in a particle distribution, a large chromaticity may cause a 

tune spread which is large enough that some of the particles have tunes that lie on or near 

undesirable resonances. To compensate for this effect, sextupole magnets are added as cor- 

rection elements in the lattice. The magnetic field in a sextupole is quadratic in position; 

B, = fB:g' and B, = ~B$2. Sextupole magnets, therefore, provide a field gradient 

which is linearly proportional to a particle’s position offset. Using Equation 2.3 1, the con- 

tribution to the chromaticity from N sextupoles in the accelerator ring is 

Q = (2.32) 

where Ic( s) = B"( s)L/ Bp. The natural chromaticity is thus corrected for with the addition 

of sextupoles at high dispersion points in the ring. Note, however, that along with the bene- 

ficial contribution to the chromaticity, sextupoles do add nonlinearities to the lattice which 

must be accounted for to ensure stable running conditions. 

2.2 RESONANT MOTION DUE TO MAGNETIC FIELD ERRORS 

Magnetic field errors arise from many sources in a real accelerator. There may be small 

magnet-to-magnet variations in the magnetic field produced even when the electric currents 

are the same in all magnets. Even if the magnetic field is within the design specifications, 

a magnet may be misaligned from its design position. This misalignment may occur in its 

transverse placement in the ring causing the particle to see field errors in normal compo- 

nents of the magnetic field. The misalignment may also manifest itself as a slight rotation 

of the magnet causing the particle to interact with skew components of the magnetic field. 

Magnetic fields along with field errors in a magnet are fully expressed as a fraction of the 

dipole bending field Bo by[14]l[13] 

iB&, y) + B&, y) = Bo ‘&bn + k.)(~ + iy)“. (2.33) 
n=O 

The constants b, and a, are the multipole coefficients of the magnetic field. 

Suppose that there is a constant magnetic field error in either a dipole or quadrupole 

which is located at s = 0. As discussed in Section 2.1 of this chapter, a particle’s trajec- 

tory will be a free betatron oscillation about the unperturbed closed orbit. When the particle 

arrives at s = 0, the slope of its trajectory will change by an amount A@. To constrain the 
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particle’s motion to a new closed orbit, the trajectory of the orbit must close upon itself after 

one revolution. 

x,(s t 2rR) = x,(s) (2.34) 

This constraint allows a closed orbit position to be calculated: 

xc,(s) = A@GiE 
2 sin XQ 

cos(A$ - rQ) (2.35) 

where 0 < A$ < 2n and ,f30 is the beta function at the location of the field error. 1151 The dis- 

placement of the orbit is directly proportional to the magnitude of A0 and the beta function 

at the location of the error. A resonant condition due to the field error is seen in the denomi- 

nator of the closed orbit expression. As the tune approaches an integer, the amplitude of the 

oscillation will become large. This condition to be avoided is known as an integer resonance 

condition. 

For completeness, let the transverse position of a particle be written explicitly as the sum 

of free betatron oscillations, energy oscillations and oscillations due to closed orbit errors. 

A subscript notation is used to denote zp(s) as the free oscillations of Equation 2.9 about 

the closed orbit given by Equation 2.35. The position x~(s) denotes the change in position 

due to dispersion effects as described in Equation 2.26. Beam position monitors in the ac- 

celerator will thus measure orbit positions which include all of these effects: 

x(s) = q(s) + Q(S) + xc(s). (2.36) 

If a field error exists which is a quadrupole field error, the beta function in the accelerator 

will change. The deviation of the beta function from the beta function of the lattice design 

which is free from magnetic field errors is commonly referred to as a beta wave. The results 

of the derivation of a beta wave due to a small gradient error in a quadrupole 1s * 1151 

ap(s)= 1 
PM 2 sin 21rQ f 

q(s’)/?(s’) cos 2( A$ - aQ)ds’. (2.37) 

The beta function of the real lattice normalized to the beta function of the design lattice is 

denoted by p hp. The parameter q( ) s is the quadrupole strength associated with the kick of 

magnitude A6’ a particle sees at a transverse position 5: qx = Ad. Note that the denominator 

of the beta wave indicates a new set of resonances which must be avoided when quadrupole 

field errors are present. Half-integer values of the tune correspond to a beta wave of infinite 

magnitude. Along with an integer resonance, therefore, operating close to a half-integer 

resonance in an accelerator is a particularly dangerous condition. Regardless of whether 
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the particles are initially at a high oscillation amplitude or are in the core of the distribution, 

particles will grow in amplitude without bound and eventually be lost. 

In general, if a magnetic field error exists in an accelerator, the transverse equation of 

motion of a particle becomes inhomogeneous: 

d2X 
@ t K(s)x = g(x,s). 

The driving function, g( 2, s), is a force term which may be a nonlinear function of amplitude 

x and azimuth s. 

A Courant-Snyder coordinate transformation into the normalized coordinates of Equa- 

tion 2.18 along with a phase transformation will enable this inhomogenous Hill’s equation 

to be expressed as the equation of motion of a driven harmonic oscillator. By reducing the 

phase $(s) by Q such that 4(s) = 6 T/J(S), the equation of motion becomes 

d2xN 
-g-j- + Q’XN = -Q2 &d) g(xN, 4). 

The phase r$ now advances by 27r after each turn. In the (XN, 4) coordinates, the mathe- 

matical methods used to describe the motion of a driven harmonic oscillator become avail- 

able. The notion of a resonance between a particle’s tune and a harmonic amplitude of the 

driving term is the same as that of a simple harmonic oscillator. 

The driving force is expressed in terms of m multipole moments of the dipole field error 

using Equation 2.33. A magnetic field expressed in terms of normal multipoles ( assuming 

skew multipoles terms are equal to zero ) in one dimension is given by 

The first, second and third terms denote the dipole, quadrupole and sextupole moments of 

the field error AB, respectively. In general, the mth term denotes the mth order multipole 

moment of the field error. Each multipole moment can drive a particle into resonance if the 

resonant frequency of the driving term equals that of the frequency of the solution to the 

homogeneous Hill’s equation; 

XIV(~) = Acos(Q$ + 6). (2.41) 

Consider, for example, the resonance effects of a sextupole moment. The equation of 

motion expressed in terms of the bz moment is 
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a2xN 
w + Q’XN = 

Q2Bo s 
-(BP) PWb2dP (2.42) 

If the driving term on the right hand side of the equation has the same frequency as a par- 

ticle’s tune, a resonant condition will exist. The right hand side is a product of a sextupole 

moment and x&, both of which can be alternatively expressed as Fourier series in 4. The 

frequency of the driving term is a combination of the frequency 2Q expressed by xh and 

the harmonic frequency of b2,@. If the product b$ f has a nonvanishing pt h harmonic such 

that p f 2Q = Q, a resonant condition exists. The frequency p + 2Q = Q leads to the 

condition that the tune should not be an integer if one wants to avoid a resonant condition. 

The frequency p - 2Q = Q leads to the condition that the tune should not be a third of an 

integer.Pl 

In general, the equation of motion for a driven harmonic oscillator is well suited for dis- 

cussion using Hamiltonian techniques. Chapter 3 will concentrate on the Hamiltonian ap- 

proach to solving this equation of motion for the nonlinear driving force of the beam-beam 

interaction. 

2.3 THETEVATRON ASACOLLIDER 

In a typical colliding beam store, six proton bunches and six antiproton bunches circu- 

late in the Tevatron in opposite directions. A given proton bunch passes by an opposing 

antiproton bunch at twelve locations in the ring. The details of the electromagnetic beam- 

beam interaction which occur at these twelve crossing points will be reviewed in the next 

chapter, so suffice it to say here that the beam-beam interaction will cause a tune spread of 

particles in the distribution which may cause some particles to shift onto resonances. 

It was experimentally determined, for example, in the first Tevatron Collider Run (1987- 

1988) that the dominant factor limiting the luminosity was the beam-beam interaction. A 

“beam-beam limit” was reached in the Collider; the luminosity could not be increased by 

decreasing the beam emittance or by increasing the bunch intensity of the protons.121 In or- 

der to minimize the adverse effects of the beam-beam interaction, electrostatic separators 

were installed in the Tevatron. The separators are oppositely charged stainless steel par- 

allel plates which provide a transverse electrostatic field in the path of the particle. The 

electrostatic field causes particles of opposite charge to circulate on different closed orbits. 

The electrostatic fields in the Tevatron are in both transverse dimensions, causing closed 

orbits of the protons and antiprotons to wrap around each other in a double-helical fashion. 
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This ability to separate the beams in two dimensions is a unique capability of the Tevatron 

Collider. It proved to be a successful method of limiting adverse effects of the beam-beam 

interaction during normal collider operation. 

The separators are configured to separate the beams everywhere except at the location 

of the Colliding Detector Facility (CDF) detector located at the BO straight section and at 

the DO detector. In order to provide the highest luminosity at these locations, ‘low-beta’ 

insertions are added.151 Low beta insertions are composed of quadrupoles of a much larger 

focusing gradient than the quadrupoles used for focusing in the arcs. A low beta quadrupole 

in the Tevatron, for example, has twice the focusing gradient of a standard quadrupole, op- 

erating with a magnetic field gradient of 140 T/m at 1 TeV. Low beta quadrupoles are also 

much longer than quadrupoles in the arcs ( approximately 180 inches as compared to 66 

inches for a standard quadrupole) and thus have more than six times the focusing strength. 

Tevconfig Collider (RUN IA - Low Beta Lattice) 
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Figure 2.6: The horizontal (solid line) and vertical (dashed line) beta function at the CDF 
interaction region as specified by the design lattice of Collider Run IA. 

The advantage of greater focusing strength is seen by substituting the transverse rms 

beam size of Equation 2.21 into the luminosity expression of Equation 1.2. 
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(2.43) 

For a given emittance and bunch intensity, the highest luminosity will be achieved at the 

lowest beta. The strong focusing properties of the low beta insertion reduces the magnitude 

of the beta function at the collision point to less than a meter. The result of such strong 

focusing is that a transverse rms bunch size of approximately 1 mm in the arcs is focused 

to approximately 30 microns at the detector locations. 

It is of interest to examine the change in the beta function in a low-beta insertion. The 

beta function through a straight section is found by setting the focusing strength equal to 

zero in Equation 2.11 and solving for ,L3. 

I( = 0 : P(s) zz p* - 2cy*s + 0 y*)‘2 (2.44) 

The lattice parameters denoted by the asterick are defined at the collision point which is, 

by definition, located at the azimuthal location s = 0. During Collider Run IA, the beta 

function varied quadratically from approximately 0.35 meters at either the BO or DO inter- 

action points to 130 meters at the quadrupoles which marked the endpoints of the BO and 

DO straight sections. The variation of the beta function in the BO interaction region as calcu- 

lated from a model of the Tevatron is shown in Figure 2.6. The highest beta in the Tevatron 

(approximately 1100 meters) is reached at the defocusing low beta quadrupole locations in 

the low beta insertion. 

2.4 ACCELERATOR PARAMETERS DURING COLLIDER RUNS IA AND 

IB 

Collider Run IA ( 1992- 1993) and Collider Run II3 ( 1994- 1995) are characterized by op- 

erational accelerator parameters which are quite similar. An increase in the luminosity is ap- 

parent in Collider Run IB as the bunch intensities increase and operation of the accelerator 

continues to improve. 

Collider Run IA was split into two “low-beta modes” of operation in which the magni- 

tude of beta at both head-on collision points was changed. The first part of the run intended 

to collide protons and antiprotons at the BO and DO collision points with a 0.5m value of ,8*. 

The presence of a beta wave in the Tevatron resulted in a lower p* than the design value at 

both the BO and DO interaction points. The existence and consequences of the beta wave 

are discussed in the latter part of this section. The second part of the collider run attempted 
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to lower p* to 0.25m to further increase the luminosity. 

At the time of this writing, Collider Run IB has operated exclusively with a /3* of ap- 

proximately 0.35m. Current machine studies are testing the possibility of operating at a ,!I* 

of 0.25m in the latter part of Run IB. 

The experimental measurements which are presented in this dissertation were taken us- 

ing the 0.5m p* lattice of Collider Run IA and the 0.3.5m p* lattice of Collider Run IB. Con- 

sequently, the conditions of operation discussed here concern only those relevant parts of 

Run IA and Run IB. Typical values of operational accelerator parameters during Collider 

Run IA and Collider Run IB are listed in Table 2.1. 

Tevatron Accelerator Parameters 

Longitudinal Emittance 

Table 2.1: Tevatron accelerator parameters in Collider Run IA and Collider Run IB. 

The actual collider lattice in the 0.5m p* part of Run IA differed from its intended de- 

sign in that a beta wave existed in both transverse dimensions of the Tevatron. As shown in 

Equation 2.37, a small perturbation of the strength of a quadrupole from its design specifi- 

cation will produce a beta wave which modifies the beta function of the design lattice. The 

problem in the Tevatron occurred in the magnetic fields produced by the quadrupoles in the 

low beta insertions. The transfer constants which represent the actual field produced for a 

given current differed in the real accelerator from the design specifications. The difference 
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between the beta function as specified by the design lattice and the beta function which was 

actually present during Collider Run IA is shown for a section of the Tevatron in Figure 
2 7 1191 . . 

The perturbation of the strength of the low beta quadrupole is too large to be described 

exactly by Equation 2.37. A perturbative analysis is not valid in this case. i201 It should be 

noted that the beta wave was corrected for in Collider Run IB by adding “low-beta trims”; 

power supplies were installed which allowed independent control of upstream and down- 

stream low-beta quadrupoles to compensate for the gradient errors. 

Tevatron Lattice Parameters 

Lattice 

Parameter 

Symbol Run IA Run IB 

(units) BO DO BO DO 

Table 2.2: Tevatron lattice parameters in Collider Run IA and Collider Run IB. 

As Equation 2.37 indicates, a beta wave is directly proportional to the beta function at 

the location of the field error. The magnetic field error which produced the beta wave in the 

Tevatron occurred in a low beta quad which is at a high beta location. Peaks in the result- 

ing beta wave were approximately 50% greater than that of the design during the 0.5m ,8’ 

run. Note, though, that the value of the beta function at the two head-on collision sites was 

lower than the design value. This was a nice consequence of the beta wave. The measured 

luminosity obtained during the 0.5m ,/3* run was greater than what was estimated using the 

design lattice. 

Lattice parameters at the BO and DO interaction points for the 0.5 m ,8* lattice of Collider 

Run IA and the 0.35 m p* lattice of Collider Run II3 are listed in Table 2.2. 

The beta wave did cause some problems in operation though. When changing the tune in 

the Tevatron, it was found that the measured chromaticity also changed. Experiments which 

will be discussed in Chapter 5 indicated that the change in the measured chromaticity per 

tune unit using the 0.5m p* lattice was approximately 
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Tevconfig Collider (RUN IA - Low Beta Lattice) 
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Tevconfig Collider (RUN IA - Low Beta Lattice) 
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Figure 2.7: The horizontal and vertical beta wave in a section of the Tevatron. The vertical 
axis is the variation of beta from the design lattice. The solid line connects points calculated 
from a model of the Tevatron (Tevconfig) for Collider Run IA. Actual measurements of the 
beta function occurred at the points denoted by circles with error bars. 
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A& Y -= AQz 117 ;; - = 50. (2.45) 
Y 

To verify this dependence of the 0.5m /?* lattice on the tune, the change in chromaticity per 

change in tune was calculated for two different models of the Tevatron. One of the models of 

the Tevatron contained the design lattice only and the other lattice more closely reproduced 

the beta wave in the Tevatron. The chromaticity did not vary when changing the tune of the 

design lattice. The chromaticity did change, however, when it was calculated for different 

tune settings of the lattice describing the beta wave. The calculated results showed good 

agreement with the experimental results. The reason for the change in chromaticity in the 

lattice describing the beta wave could be seen in the beta function. The average beta around 

the ring did not vary largely when the tune was changed in the design lattice, but there was 

a large increase in the average beta around the ring when the tune was changed in the lattice 

describing the beta wave. [171 As indicated in Equation 2.32, if there is an increase in the 

average beta around the ring, the chromaticity will increase also. 
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Chapter 3 

THEBEAM-BEAMINTERACTION 

3.1 THEBEAM-BEAMFORCE 

A weak-strong model of the beam-beam interaction is used to define the motion of 

a “weak” or low intensity bunch colliding with a “strong” or high intensity bunch. A weak- 

strong picture of the beam-beam interaction translates in the Tevatron to an antiproton bunch 

colliding with a static electromagnetic field generated by a round, Gaussian, and short pro- 

ton bunch. Antiprotons, in a weak-strong model, are the main focus of attention as test parti- 

cles. Test particles differ from each other in that they have different amplitudes (a,, uy, a,). 

The proton intensity is assumed to be large enough that protons are unaffected by the weak 

electromagnetic fields generated by low intensity antiprotons. 

In the first approximation, the angular deflection a single antiproton experiences as it 

collides with a proton charge distribution does not depend on the longitudinal charge distri- 

bution of the protons. 1281 The transverse charge distribution is assumed Gaussian and round 

for the counter-rotating proton bunch. In cylindrical coordinates, the proton charge distri- 

bution is given by 

p(r) = z exp - 2 , [ I (3.1) 

where CY is the rms transverse size of the bunch, n is the number of protons per unit length 

and e is the proton charge. 

The electromagnetic force an antiproton experiences as it traverses a proton bunch is 

described by the Lorentz force: 

(3.2) 



where 1’ is a radial unit vector. A positive sign of the magnetic force term represents the 

force due to electromagnetic interactions with colliding protons; the beam-beam force. A 

negative magnetic force term corresponds to the Coulomb force between antiprotons in the 

same bunch; intrabeam scattering. The electric and magnetic fields counteract each other 

in the case of intrabeam scattering, but are additive in the case of the beam-beam force. 

The electric field, E,, and the magnetic field Bd are described by Gauss’ theorem and 

Ampere’s Law, respectively. 

vd4el c 1 
4 = 2= 7- (1 -e-S) 

The kick Ar’ an antiproton receives from an interaction force F, is 

Ar’ = - - L ‘F 
W4 e(&) r’ 

(3.3) 

(3.4) 

(3.5) 

where L is the proton bunch length. The beam-beam kick is found by substituting the beam- 

beam force into the kick expression: 

AT’= -- - 2Nrp ’ (1 - exp (-r2/2a2)]. (3.6) 
Yrel f 

The classical radius of the proton is denoted by rp and N is the total number of protons in the 

bunch (N = nL). Equation 3.6 is the beam-beam kick for a “head-on” beam-beam colli- 

sion; the antiproton is oscillating about the same closed orbit as the centroid of the opposing 

proton bunch. 

Figure 3.1 describes the beam-beam kick as a function of the oscillation amplitude of 

an antiproton normalized to o of the opposing proton distribution. If the antiproton collides 

at a normalized amplitude which is much less than one, the kick is linear in r. The parti- 

cle experiences an “electrostatic lens” force which, unlike a magnetic quadrupole, focuses 

in both the horizontal and vertical directions. When the normalized amplitude is approxi- 

mately equal to one, the force on the antiproton becomes highly nonlinear. As shown in the 

figure, the beam-beam kick decreases like 1 /r at large amplitudes. 

For a small amplitude particle in one dimension, z = r < o and the beam-beam kick 

acts like a thin lens of focal length f, where 

1 Ax’ 

7=2. 
(3.7) 
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Figure 3.1: Angular deflection due to a proton-antiproton electromagnetic interaction as a 
function of the oscillation amplitude of a particle. The oscillation amplitude is normalized 
to the rms 0 of the opposing charge distribution. A l/r asymptotic dependence is observed. 

Substituting for the focal length in Equation 2.25 (remembering Q = l/f), the tune shift 

of a small amplitude particle due to the beam-beam kick is 

(3.8) 

where ,O is measured at the beam-beam crossing point. The beam-beam tuneshift parameter 

t is an important scale factor which parameterizes the strength of the beam-beam kick. For 

non-round beams, the beam-beam tuneshift parameter 1s - [281 

(3.9) 

3.2 A HAMILTONIAN ANALYSIS 

A two-dimensional Hamiltonian of a weak-strong colliding beam system is defined as 

wv~, y,py; s) = ;(Pz + 1k2) + ;o( + Kyy2) + V(z, y) F S[s - (27&Z)] (3.10) 
l=--00 
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where p, and p, are the canonical momenta associated with a particle’s transverse positions 

in the horizontal and vertical planes, respectively. l32l124l The summation over 1 is a sum- 

mation of the periodic crossing points in which a particle receives a localized beam-beam 

kick. 

The beam-beam potential is described by Poisson’s equation V2V = -P/CO with the 

constraint that V -+ 0 as Z, y t 00. 1331 In terms of z and y, the transverse charge distribu- 

tion of Equation 3.1 is rewritten: 

f&Y) = 2?iyo t Y 
T+;(-$+-$)]. (3.11) 

The beam-beam potential due to this charge distribution is 

l-exp -A--& [ 1 
J&&/5+ * 

(3.12) 

An integration over the bunch length has occurred in the above expression, as evidenced by 

a change in the particles per unit length n to the total particles in the distribution N. 

The symmetry of the potential expression dictates that only even-ordered resonances 

will be driven in head-on collisions. An expansion of the exponential term in the potential 

gives terms of order 22ny2m, where n and m are integers. In other words, In,1 f lnyl of 

Equation 2.24 must be equal to an even integer. Just like any nonlinear resonance driving 

term (caused by sextupole magnets or octupole magnets, for example), these driving terms 

excite resonances whenever the betatron tunes satisfy the resonance condition described by 

Equation 2.24. 

Odd-ordered resonances require the symmetry of the potential to be broken, and are 

present when the beams are separated transversely or when there is dispersion or a crossing 

angle at the collision point. If there is a transverse separation between the closed orbit of 

the particle and the centroid of the colliding particle distribution, the potential is redefined 

as 

v(x,y) = %/o-dt 
l-exp -w-e 

[ I 
JG+/~y ’ 

(3.13) 
re 

where d, and d, denote the horizontal and vertical separations of a particle from the centroid 

of the bunch distribution. 

At a single crossing point, the equations of motion described by the Hamiltonian of 

Equation 3.10 are 
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g + K,(z) = -g S[s]: 2 E x,y. 
z 

(3.14) 

THEUNPERTURBED HAMILTONIAN 

Consider the simple case of a one-dimensional system (y = 0) in which the beam-beam 

potential is equal to zero. Hamilton’s equation dH/i3p, = x’ yields the relation p, = 2’ 

and confirms the conjugate coordinate of the position x as z’. A generating function is used 

to canonically transform the Hamiltonian into a new Hamiltonian using action-angle coor- 

dinates (J’, 8). The new Hamiltonian has the advantage of being independent of the longi- 

tudinal coordinate s if one introduces a periodic coordinate, GZ, which is related to & of 

Equation 2.12 by 

The generating function used in the canonical transformation is given byI ‘1 

G,(x, &; S) = -$-[tan F, + %I, where 
z 

This generating function produces the coordinate transformations[2 ‘1 

x = JZXcos(&++,) (3.17) 

(3.16) 

3’ = - I t Q,> t Q, cos(liz t h,] , 

(3.18) 

and the new Hamiltonian is 

dG, QzJz Hl = H(x, 2’; s) + - = - 
ds R * 

(3.19) 

The parameter R is a scaling of the longitudinal parameter s. By resealing the Harniltonian 

using 8, the parameter R is eliminated. Recalling that d/de = Rd/ds, the Hamiltonian is 

I&(J,,#J,;~) = H1(J,:&; s) x R = Q,J,. 

The equations of motion are given by 

(3.20) 

dH1 
4x = aJ, - = Qz:. (3.21) 
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(3.22) 

where the dot notation designates a derivative with respect to 8. With no beam-beam inter- 

action, the amplitude of a particle at a given location remains constant: J, = constant. J, 

is therefore equal to the area enclosed by the ellipse in (2, x’) phase space. The invariant 

single particle emittance is closely related to the invariant J,; J = A2/2, where nA2 is the 

invariant described in Equation 2.17. 

An equivalent derivation holds for both transverse degrees of freedom. The unperturbed 

part of the Hamiltonian described by Equation 3.10 is thus 

H(tf, 8; 0) = Q,Jz + QyJy = cj. i 

This system is equivalent to a system of two uncoupled harmonic oscillators. 

(3.23) 

THE RESONANT HAMILTONIAN 

It is of interest to examine a particle’s motion due to a single resonance, that is, to isolate 

part of the Hamiltonian when a particle’s tune Q is close to a value satisfying nQ x p, where 

n and p are integers. The resulting “resonant” Hamiltonian is used to delineate a particle’s 

motion when its tune is close to a resonance of order n. With the inclusion of the beam-beam 

perturbation, the resonant Hamiltonian is of the form132112* 

(3.24) 

The first term in the Hamiltonian describes the linear motion of a particle near a resonance 

of order n. The last two terms are scaled by the linear beam-beam tuneshift parameter; both 

terms are due to the beam-beam interaction. The term U(f) is the amplitude detuning func- 

tion which describes the variation of tune with amplitude due to the beam-beam interaction. 

The term Vn(J) is a beam-beam “resonant excitation” term and is known as the resonance 

width function.[32] Each of these terms will be discussed in more detail in the next two sec- 

tions. 

An important property of a single resonance model is found from Hamilton’s equation 

of motion describing a particle’s amplitude. I2 ll Motion dominated by a single resonance is 

given by 

(3.25) 
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The dot denotes a derivative with respect to 8. Equation 3.25 points to a relation between 

the two transverse amplitudes: 

c + : = constant 
2 

or, equivalently, 

p t $ = Cl t c2.@) 
I 

(3.26) 

(3.27) 

where cl and c2 are constants. A particle’s motion plotted in amplitude space (Jr, J,) fol- 

lows a straight line. Motion in amplitude space is bounded or unbounded depending upon 

the signs of n2, and ny. Bounded motion occurs when one of the components of n’ are neg- 

ative; when the resonance is a “difference resonance”. A growth in a particle’s horizontal 

amplitude, for example, will lead to a decrease in a particle’s vertical amplitude. Unbounded 

growth in amplitude occurs when both components of n’ are positive; when the resonance 

is a “sum resonance”. This relation has led to a popular assumption that sum resonances 

are dangerous resonances and that difference resonances are safe. What is not considered 

in this assumption is that even in the case of bounded motion in amplitude space, a particle 

still has the potential of being lost due to a large amplitude growth in one dimension. 

3.3 THEBEAM-BEAMTUNE SHIFT 

In the absence of all resonances (n = 0), a particle’s tune shift due to the beam-beam 

interaction is derived from the amplitude detuning function U(j) in the resonant Hamil- 

tonian. This amplitude detuning function is obtained from the beam-beam potential using 

the action-angle coordinate transformation of Equation 3.15. In the case of round beams, 

a, = gy is 0 and the beam-beam potential in terms of action-angle coordinates is given by 

v(j’, 8) = 7 Jrn dt 
0 

- (dm COS $k - dk) 2 

202 + t I) . (3.28) 

The product over k represents the two transverse dimensions; (1,2) 3 (2, y ). 

Consider the case of a non-zero separation d in the horizontal direction. Equation 3.28 

is rewritten as 

i 

1 - exp 

[ 

-U )‘- u$cos~$~]) . (3.29) 
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The separation, dN, is a normalized horizontal separation (dN s d/a). The variable of 

integration has been changed to U, where u s l/(1 + (t/a2)). The beam emittance E is 

substituted into the expression (E = a”/p), where the beam emittance of Equation 2.20 is 

defined at la. 

The detuning function of the resonant Hamiltonian is found by averaging the beam-beam 

potential over all angles. In one dimension, the detuning term in the resonant Hamiltonian 

is 

(3.30) 

The beam-beam tune shift is obtained from the derivative of the detuning term. This is seen 

by examining Hamilton’s phase equation of motion. In the absence of resonances, 

-=-= d$ dH Q-[""ay' 

dB dJ 

or, equivalently, the shift in tune is 

(3.31) 

(3.32) 

Horizontal and vertical tune shifts for round beams in the presence of a non-zero horizontal 

separation are given by WI 

AQx 1 -=- 
J tx &To 

2*dqh ‘OS’ 
ax [ cm 4 - * 

, (1 -exp [-2 (&cosqh- $)2]) (3.33) 

and 

AQ, 1 -=- 
tY J 2n 0 

2sdq5 ‘Os2’ c (1 -exp [- (2o,cos?)+ *)I). (3.34) 
QyCOS2 4 t 4 

For convenience, the parameter Q has been used in the above expressions, where 

Jk 
ak=z7 

(3.35) 

and k - 5, y . Horizontal and vertical tune shifts for various beam separations in the hor- 

izontal plane are plotted in Figure 3.2. Tune shifts are plotted as a function of normalized 

particle amplitude, a. The amplitude of a particle is defined in terms of action-angle coor- 

dinates as 
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Figure 3.2: Horizontal and vertical tune shift due to beam-beam detuning in the presence of 
horizontal separation. A round beam approximation is used. 
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Normalizing to the transverse beam size of the proton distribution, 

(3.36) 

(3.37) 

and is in units of 0. 

Note that horizontal and vertical tune shifts are scaled by the beam-beam tuneshift pa- 

rameter. Maximum tune shifts for any amplitude particle occur in the case of head-on col- 

lisions. In head-on collisions, small amplitude particles are shifted in tune by the largest 

amount. The shift in tune decreases nonlinearly with particle amplitude. Amplitude depen- 

dent tune shifts lead to a spread in particle tunes for a distribution of particles. The antipro- 

ton tune spread characteristic of one head-on collision in the Tevatron during Collider Run 

IB is mapped in Figure 3.3 as a “beam-beam tune footprint”. In the figure, the tune which 

is unperturbed by the beam-beam interaction ( referred to as the base tune in this work ) is 

marked with a cross mark. Zero amplitude antiprotons are shifted linearly in tune by ap- 

proximately 0.006 tune units both horizontally and vertically. A typical Collider Run in the 

Tevatron operates with two head-on collisions and thus with a linear tune shift 6 of 0.012. 

The beam-beam interaction redefines the working point for particles with unperturbed 

tunes into a working area in tune space. For good beam lifetimes and stable operating con- 

ditions, it is desirable to keep the entire area in which particles are spread in tune away from 

destructive resonance lines in tune space. 

It is interesting to note that the amplitude dependent tune shift which results from the 

beam-beam interaction is predicted to have a stabilizing effect on a particle in resonance. 

Consider a situation in which a small amplitude particle is driven into resonance and expe- 

riences amplitude growth. The tendency of the particle to take on different tunes as it grows 

in amplitude characterizes a “detuning” effect. The rate of a particle’s amplitude growth 

will decrease as the particle is shifted in tune off of a resonance. The detuning effect brings 

the destructive effects of the resonance under control. This is an important aspect of the 

beam-beam force. The phase space of a particle in the presence of the beam-beam inter- 

action is always a closed phase space; a chaotic region which may exist will not extend to 

infinity. Previous beam-beam studies have examined the onset of resonance islands in phase 

space and the overlap of resonance islands which leads to chaotic motion. Surprisingly, typ- 

ical strengths of the beam-beam interaction in hadron colliders are much smaller than that 

predicted for the onset of chaotic motion in a particle’s phase space. Resonance overlap 
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Figure 3.3: Beam-beam tune footprint for one head-on collision in the Tevatron Collider. 
The footprint was calculated analytically for antiprotons with oscillation amplitudes ranging 
from 0 to 5~. 

has been observed when an external modulation, such as a tune modulation, is added to the 

beam-beam model.124112311221 

In a real collider, though, beam stability in the presence of the beam-beam interaction is 

not observed. It will be shown in this work that higher background rates are driven by the 

beam-beam interaction in the Tevatron when the operating tune is near 7th and 9th order res- 

onances. The SPS collider at the European Laboratory for Particle Physics (CERN) found 

destructive beam-beam effects (a decrease in beam lifetime) due to the 16th order resonance. 

Higher background rates were also measured in the SPS due to an increased beam-beam in- 

teraction effect for proton and antiproton emittances of unequal size. i2@ A long range beam- 

beam experiment performed in the Tevatron collider showed an increased beam loss when 

the proton and antiproton bunches were separated by about 1.5 u to 2.0 o.I~~] 

3.4 AMPLITUDE OF A RESONANCE 

As expressed in Equation 3.28, the beam-beam potential is an even function in angle. 

In one dimension, the Fourier series expansion of the beam-beam potential is 
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V(Jb> = 2 V,(J)cosnA (3.38) 
n=l 

where the summation over n includes all orders of resonances. In an isolated resonance 

model, a single resonance of order n is accepted as the dominant resonant term. Higher or- 

der terms are neglected as contributing to a particle’s resonant motion. The resonant width 

function, Iyn( J) of Equation 3.24, represents the amplitude of the dominant resonant exci- 

tation term in the beam-beam potential. 

The amplitude of a beam-beam resonant driving term is obtained from the derivative of 

the beam-beam potential (F = - OV). The Fourier series expansion of beam-beam driving 

terms of order n is given by 

(3.39) 

The amplitude of a resonance of order n is the nth Fourier component of its Fourier series 

expansion. This amplitude is the derivative of the resonance width function with respect to 

J. 

(3.40) 

Substituting the beam-beam potential of Equation 3.28 into the above expression gives the 

amplitude of a resonance due to the beam-beam interaction: 

v,‘(a) = $JuZ’@ CoSn#Jcos4 
CY (co, d - $) 

(1 -exp (-2 [~coso- t]*)) , (3.41) 

where 5 is the linear beam-beam tuneshift parameter and the prime denotes a derivative with 

respect to J.12q 

For head-on collisions, the amplitude of the resonance for various even-ordered reso- 

nances is shown in Figure 3.4 and 3.5. Both figures normalize the resonance amplitude to 

the beam-beam tune shift parameter. Figure 3.4 displays the absolute value of the resonance 

amplitude in the more familiar logarithmic scale seen in much of the literature (See Evans 

(1983) or Peggs (1986), for example). Figure 3.5 is the resonance amplitude plotted on a 

linear scale. It is evident in both of these figures that the absolute magnitude of the reso- 

nant component of the beam-beam perturbation is greater for lower order resonances than 

for higher order resonances. This is true for a particle at any oscillation amplitude. 
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Figure 3.4: Absolute value of the amplitude of a beam-beam driven resonance of order n 
for head-on collisions. A round beam approximation is used. 
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Figure 3.5: Amplitude of a beam-beam driven resonance of order n for head-on collisions. 
A round beam approximation is used. 
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Figure 3.6: Absolute value of the amplitude of a beam-beam driven resonance of order n 
for a beam separation of 20. A round beam approximation is used. 
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Figure 3.7: Amplitude of a beam-beam driven resonance or order n for a beam separation 
of 20. A round beam approximation is used. 
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Figure 3.8: Amplitude of a beam-beam driven resonance of 7th order for different horizon- 
tal separations. A round beam approximation is used. 

A non-zero separation introduces resonant components of the beam-beam force which 

drive odd-ordered resonances. For a separation of 20, the resonance amplitude is plotted for 

some odd and even-ordered resonances in Figure 3.6 and Figure 3.7. Although driving terms 

from lower order resonances have a maximum oscillation amplitude which is larger than 

higher order resonances, it is no longer possible to generalize that the amplitude of a beam- 

beam resonant driving term is larger for lower order resonances. A particle oscillating at a 

given amplitude may in fact see a larger resonance excitation near a higher order resonance, 

The dependence of resonance amplitude on beam separation is shown in Figure 3.8 for 

a seventh order resonance. 

3.5 BEAM-BEAM SIMULATIONS 

In order to predict a particle’s behavior in the presence of the beam-beam interaction 

in the Tevatron, a simulation code was developed to calculate the predicted position and 

phase of a particle after a designated number of turns. The simulation code is descendant 

from simulation code originally written by Werner Herr.[341[35] 
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The model used for the simulation is concerned only with particle motion due to the 

beam-beam interaction. The motion of a particle between beam-beam crossing points is 

assumed to be linear motion and coupling between the two transverse planes is not taken 

into account. The particle experiences an angular kick due the beam-beam interaction at 

each beam-beam crossing point. The simulation code is summarized below. 

Given a particle’s initial position and phase at a location 1 in a collider, a linear propa- 

gation to location 2 is described by 

x2 Xl 

4 
= M12 

Xi 

:I il 

Y2 Yl . 
(3.42) 

Yi Yi 

The transfer matrix M is defined by the lattice parameters in the horizontal and vertical 

planes at the corresponding locations [9]: 

(3.43) 

where m, and my are given by Equation 2.13. The simulation assumes the motion of a par- 

ticle from one beam-beam collision point to the next is a linear motion as described above. 

The phase advance from a beam-beam crossing point (1) to the next crossing point (2) is 

given by 

A$ = $2 - $1 = 2nAQzl. (3.44) 

At each beam-beam interaction point, a beam-beam kick of magnitude AZ’ and Ay’ is 

added to a particle’s phase. The beam-beam kick expression of Equation 3.5 is generalized 

to non-round beams in the simulation. For computational purposes, the vertical kick in the 

simulation is given by 

for a > b .[38] The parameters a and b denote the horizontal and vertical bunch sizes of 

the colliding proton distribution. The function w(A + iB) is the complex error function. 
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The horizontal kick is given by the imaginary part of the square brackets. The use of an 

algorithm to calculate the complex error function using an asymptotic approximation and 

Pade approximations decreased computation time significantly.i3q 

When a non-zero beam separation is present at a collision point, care must be taken in 

calculating the beam-beam kick.i 36] Consider a beam-beam collision with a non-zero sep- 

aration d in the horizontal plane. The beam-beam potential of Equation 3.13 is 

V(x,y) = c/d - e 
- $!i$+& ( > 

Jc20: + q2a; + t) 
where C = Nr,/y. The kick from this potential is 

- *+z$& ( > = C(x - d) J dt 
Jo:; + i)3/2(29 + ty’ 

(3.46) 

(3.47) 

For zero amplitude particles, this expression becomes 

d2 

Ax’ = Cd dt J, -TqTt ( > 

(aa; 1t)3/2(2cT; + ty 
(3.48) 

which is merely a dipole kick. This dipole kick will result in a shift in the closed orbit of 

the particle. In order to calculate a particle’s tune, it is necessary to calculate the gradient 

of the kick around the closed orbit of the particle, i.e. x=0. The approximation of Equation 

3.8, Q = Ax’/x, which was used in the head-on collision case is no longer valid. The valid 

expression is 
Q _ ww -- 

dx * 
(3.49) 

The change in a particle’s closed orbit due to the constant dipole kick is negligible for 

small kicks, but the change is large for sizeable kicks. A large dipole kick will change a par- 

ticle’s reference system. A subtraction of the dipole kick is necessary to bring the reference 

system back. The beam-beam kick used in the simulation code is obtained by subtracting 

out the dipole kick contribution; 

Ax;,~,~ = Ax’(y + d) - Ax’(d). (3.50) 

This beam-beam kick expression will give a correct calculation of the beam-beam tune shift 

of a particle. If the dipole contribution is not subtracted, small amplitude particles will as- 

sume much larger amplitudes. These particles will then start betatron oscillations with larger 
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amplitudes than their original amplitudes and start to sample a different amplitude of the 

opposing beam. In reality, the particles oscillate with the same betatron amplitudes but at 

different closed orbits. The tune change is thus 

and 

AQaq=C; (x--d+t 
( 

,-(Eg+z$) 
424 + t)3/2(2a,2 + t)1/2 (3.51) 

aQmq=cJdt 
,-(*+&TJ ,-(~+s$kJ 

J(2o; + t)3/2(2$ + ty -z(x-d)2 J dt 
42c; + t)5/2(2oyZ + t)1/2 

(3.52) 

For x = 0, the linear tune shift is 

- 
a&ccq=cJdt 

( &+z$ > 
J(20; + t)3/2(20,2 + ty - J 

- 2%+& ( > 
2Cd2 dt 

)/(20; + qq2a; + t)‘/2 
(3.53) 

The first term is the well known classical part. The second term can cause the tune shift to 

become negative after a certain separation d. 

Figure 3.9 illustrates the beam-beam tune shift vs. separation as computed by the simu- 

lation code. The horizontal and vertical tune shift due to one beam-beam collision is shown 

for a small amplitude (O.OOla,, O.OOla,) and a large amplitude (2a,, 20,) particle. The op- 

erating tune for the above simulation runs was in a “resonance free” region of tune space; a 

region absent of lower order resonances. 

It is of interest in this work to compare beam-beam simulations to particle losses. In 

this case, the absolute position of a particle at a given location in the ring is important. The 

orbit offset due to the dipole kick which is subtracted from the beam-beam kick during par- 

ticle tracking must be taken into account. The dipole kick causes a particle to orbit on a 

new closed orbit. All amplitude particles in a particle distribution are kicked equally by the 

dipole kick. It is sufficient to calculate the additional orbit offset which results from the 

dipole kick and add this orbit offset to that measured during tracking.141 The closed orbit 

offset is calculated using Equation 2.35. 
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Figure 3.9: Simulation results of the tune shift of a small and large amplitude particle in the 
presence of a non-zero horizontal separation. 
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